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Abstract

This investigation presents modifications and improvements to the dynamic subgrid scale model and introduces a
new-wall model. These modifications are implemented in the large eddy simulation technique in curvilinear coordinates.
They are then validated and tested in three-dimensional complex geometries. The large eddy simulation method cap-
tures many scales of turbulence up to the grid size. A closure model is used to simulate subgrid turbulence. The
Smagorinsky and dynamic subgrid models are presented and tested. The dynamic model overcomes many of the de-
ficiencies of the Smagorinsky subgrid scale model. Spatial and temporal low-pass filters have been introduced in the
dynamic subgrid scale model for numerical stability. Several near-wall models are considered for the large eddy sim-
ulation technique. A local averaging technique lends these models to be applicable in complex geometry situations. A
new model is introduced which overcomes planar averaging near the wall and captures ejection and sweep effects. These
models have been implemented in a large eddy simulation computer program. Results are validated and tested in a lid
driven cavity flow at Reynolds number of 10 000. A single tube in a channel is simulated to show the applicability of the
models to complex geometries with attachment and separation as well as end-wall effects. The shedding effect was
captured and turbulence statistical characteristics were acceptable. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Not all computational fluid dynamic (CFD) methods
are applicable to solve turbulence problems, much less in
complex geometries. As in any engineering method, a
compromise is needed between accuracy of results and
time/cost of effort in acquiring the results. Resolving all
the scales of a turbulent flow is too costly, while em-
ploying highly empirical turbulence models to complex
problems could give inaccurate simulation results. The
large eddy simulation method would achieve the above
requirements. Here, the large scales in the flow are
solved and the small scales are modeled. The Smago-
rinsky [31] model is commonly used to describe the eddy
viscosity. Germano et al. [§] have introduced the dy-
namic procedure for better prediction of the eddy vis-

*Corresponding author. Tel.: +1-979-845-7090; fax: +1-979-
845-6443.
E-mail address: y-hassan@tamu.edu (Y.A. Hassan).

cosity. Lilly [19] proposed modifications to the dynamic
model of [8] based on a least-square minimization
method.

A characteristic of turbulent flows is the high gradi-
ents near solid walls. The viscosity of a fluid enforces the
no-slip condition and acts as a ‘sink’ for momentum
[32], leading to a characteristic length near the wall that
is viscosity dominated. The difference in length scales
between the near-wall and rest of the flow necessitates
the treatment of the surface layer separately from the
rest of the flow. The logarithmic region (or inertial
sublayer) is the link between the different scales. There
are many models that relate the shear stress at the wall
to a location within the logarithmic region. However,
most models do not make a distinction for the direction
of the shear stress at the wall. Since turbulent flows are
three-dimensional, this approximation may not be a
good one, especially for complex flows with separation.
It should be noted that it is possible to resolve the wall
layer in a CFD calculation. However, a large amount of
resources must be allocated for this purpose. For
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engineering applications one may consider wall models
as a compromise between accuracy and available re-
sources.

In the following investigation, the large eddy simu-
lation method is used in complex geometries. Several
wall models are considered for these simulations. Sec-
tion 2 gives a brief description of the large eddy simu-
lation technique with applicable subgrid scale models.
Then, several wall models are discussed including a
newly developed model. Simulations are performed in a
lid-driven cavity and a single tube in a channel as test
cases for the models in complex geometries.

2. Large eddy simulation

Large eddy simulation (LES) uses a spatial filtering
operation to separate the large scales that are to be cal-
culated from the small scales that are to be modeled [18]. A
one dimensional filtered variable in LES is defined as

Frt) = / Gl ) f (1), (1)

where G(x,x’) represents a low-pass spatial filter func-
tion with a characteristic width 4. A filter operator is
normalized to one. Filter functions that are common to
LES include the box filter or the tophat filter in real
space, the Gaussian filter in real or wave space, and the
sharp Fourier cutoff filter in wave space.

Applying the filtering operation to the continuity and
momentum equations and using the commutation
properties, filtered equations are obtained.
ou;
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where the subgrid scale (SGS) stress tensor t;; must be
expressed as a function of resolved flow variables.

In the Smagorinsky model, proportionality between
the anisotropic part of the SGS stresses and the large-
scale strain rate tensor is assumed

1 _
Ty — 30T = —2v1Sy, (4)

where vy is the SGS eddy viscosity and is generally as-
sumed to be a scalar quantity, and Sj; is the large-scale
strain rate tensor. The following definition applies for
the SGS eddy viscosity

= (Cs4)’[S], (5)
where the local strain rate is defined by

S| = (25;5,)", (6)
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and Cs is the model parameter ranging from about 0.065
to 0.25, and 4 is the length scale used in the definition of
the filter.

The dynamic subgrid scale (DSGS) model has shown
to predict SGS stresses better than the Smagorinsky
eddy viscosity model [1,9,24,35]. However, the DSGS
itself has several drawbacks that include the necessity of
planar averaging and bounds on the model coefficient
[8]. In complex geometry situations where no homo-
geneous direction exists, planar averaging of the model
coefficient, as suggested by Gremano et al. [§8], is not
practical. Dynamic models have been used where upper
and lower bounds on the model coefficient are applied to
avoid large variations that may lead to instabilities [2].
In addition to these strong variations in space, the model
coefficient contains a significant fraction of negative
values as observed by [20,21]. Smoothing of C locally or
truncation efforts are mathematically inconsistent;
however, there is a tradeoff between these and numerical
instabilities as observed when no smoothing or aver-
aging of any form is done. Breuer and Rodi [4] have
suggested a lowpass filtering of the dynamic coefficient.
While this approach keeps C time dependent, it only
allows variations with low frequencies. They suggested
using a recursive lowpass digital filter given by

Cliterea = (1 = 2)C" +2C"™"! (®)

with values of ¢ on the order of 1073, Here, the damping
of the high frequency oscillations in time are extended to
space as well. The absence of a homogeneous direction
in complex flows and the need for numerical stability
necessitates such a move. A spatial low pass filter is
applied on the model coefficient on the level of the test
filter. While local averaging does overcome the absence
of a homogeneous direction, it does not filter out the
high frequency oscillations. On the other hand, a low
pass filter of the test filter volume performs the necessary
high frequency damping to help with numerical stability
of the solver. One must be careful since time averaging
of the coefficient causes the model to lose Galilean in-
variance. Meneveau et al. [22] found that a mismatch of
timescales between the real backscattering events and
the modeled ones based in the resolved scales is the main
reason of backscattering instability in numerical simu-
lations. They suggest the use of a Langrangian time-
averaging as remedy.

3. Wall modeling
To avoid the placement of a large number of grid

points near a wall, a wall model is generally used to
capture near-wall effects. These models are empirical
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boundary conditions that bridge the gap in the wall re-
gion. Although this issue receives less attention than
SGS modeling for LES, it is as important.

One must be careful when using these models, since
most wall models are developed by simplifying as-
sumptions and tested in simple flows. These models are
not easily applicable to cases involving streamwise and
spanwise surface curvatures, pressure gradients, and
separation as in complex geometries. The most popular
approximate boundary conditions used in large eddy
simulation are shear stress boundary condition in the
streamwise and spanwise directions with a zero velocity
in the wall normal direction that are designed to be
consistent with the logarithmic law-of-the-wall in the
mean.

In laminar flows, the linear relationship between the
wall shear stress and velocity enables a simplified
method of capturing wall effects

Ou
Ty = ua—yp , )

where 7, is the wall shear stress, u is the viscosity, y is
the normal distance of the first grid point from the wall,
and u is the velocity at that point (P) relative to the wall.
However, in a turbulent flow, this relationship is no
longer linear.

In turbulent flows, there exists a region that exhibits
well-established features including a logarithmic section.
This a priori known feature is used to estimate the near-
wall velocity that obeys the well-known logarithmic law-
of-the-wall

ut =yt for y" < 11.81, (10)
ut = o 1og(”fy> +52 (11)
v )

T

where y* and u" are defined as

+_pyur

= 12
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The friction velocity, u,, is defined as

4y = \E (14)

It is stipulated that for the LES method, models with
distinct terms for the wall shear stress components are
more appropriate. The advantage is that the first grid
point can be specified in the logarithmic region
30 < y* < 200. There will be no need to resolve the wall
layer. New approaches in the application of these
models were necessary to accommodate for complex
geometries. Modifications were also performed to en-

hance the ability of a model to simulate more complex
physics. The following sections will give detailed de-
scriptions of these wall models.

4. The Schumann model with Grotzbach’s modifications

Schumann’s [30] model applied to large eddy simu-
lation uses the shear stress boundary conditions in the
tangential directions coupled with a zero velocity con-
dition in the wall normal direction

(Tub)
Tup = , 15
b=y (15)
wp
Ty = U—, 16
b= H y (16)
vp = 0.0, (17)

where 1, and 1y, are the streamwise and spanwise wall
shear stresses, and (-) represents ensemble averaging.
The ratio of the averages in Eq. (15) forms an empirical
constant that could be obtained through experimental
means for certain flow types. This requirement of a
priori knowledge of the mean shear stress near the wall
led to modifications of the model.

Grotzbach [10] used a different approach to evaluate
(up). He took the mean velocity near the wall from the
time average of his integration and then used the log-
arithmic velocity profile of Eq. (11) to calculate the wall
shear stress. Hence a priori knowledge of the wall shear
was not necessary.

5. The shifted and ejection models

Piomelli et al. [25] went even further by taking into
account the elongated structures present near the wall.
From observations, he formulated his model according
to the fact that the local wall shear stress is related not to
the local near-wall ‘parallel’ velocity but to the near-wall
velocity at a location shifted downstream by an optimal
streamwise displacement. His shifted boundary condi-
tions are given by:

<Tub>

Tub = uPJrAY(uT)’ (18)
Twb = WP+AS%7 (19)
vp = 0.0, (20)

where As is a shift in the streamwise flow direction and
has been shown through experimental means to be
ytan(8°) for 30 < y* < 50-60 and equal to ytan(13°)
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for larger distances. This quantity represents the shift in
the correlation between velocity and wall stress. This is
known as the shifted model [25].

Piomelli et al. [25] also made a suggestion to consider
the ejection model observed in experiments. This model is
conceptually based on the dynamical processes known to
occur in near-wall turbulence. The ‘bursts’ are termed as
ejection and sweep depending on the direction of vertical
motion. They significantly affect the wall stress. The
ejection model notes that significant turbulent stress
countering events involve vertical motion, so the vertical
component of the velocity rather than the horizontal
should be correlated with the wall shear stress. The model
takes into account the fact that the correlation is negative,
hence the proposal that the streamwise wall shear stress
should correlate negatively with the wall normal velocity
at the estimation point. The ejection model is given by

Tub = (Tub) — CPULUP, Ay, (21)
Ty

Twb = WpP+As %7 (22)

vp = 0.0, (23)

where C is a constant of order 1 and the wall shear is
obtained by solving iteratively a generalized law-of-the-
wall.

6. Werner and Wengle model

The model introduced by Werner and Wengle [33] is
considered next. They have introduced a wall model
based on the linear law-of-the-wall and the power law
description of the form u* = A(y*)® (with 4 = 8.3 and
B =1/7). The model for evaluating the streamwise shear
stresses is given by

2u|up| K oa-
f <M gpen) 24
Ay or |uP‘ szy ) ( )

1+B
[ 1 5B () 11

pAy A
u B
x| —— | lus]
(pAy) }
This approach assumes that the instantaneous tangential
velocity component inside the first cell is in phase with
the instantaneous wall shear stress. This procedure offers
the advantages that no average values are required,
numerical problems in reattachment regions are avoi-
ded, and no iteration method is necessary to determine
the wall shear stress because it can be obtained analyt-
ically [4].

|Tub‘ =

2/(14-B)
K 2/0-8)
f —4 . (25
or Jue| > 37 (25)

7. Model modifications

In complex geometries it is difficult to obtain a dis-
tinct homogeneous plane. For LES wall models that
require the calculation of the mean shear stress, this is an
added difficulty. A new approach is used to overcome
this difficulty. It is stipulated that as long as the grid
curvature change in a region of the complex geometry
does not change with a high rate, the given section may
be used for evaluation of the mean shear in that region.
However, implementation of this method will encounter
difficulties when deciding the limits of the curvature
change. A local averaging technique is suggested instead.
With the local averaging technique, the planar neigh-
boring points of a wall grid are used to evaluate (up) and
Eq. (11) used to evaluate (ty,). This process not only
overcomes the difficulty of distinguishing a homoge-
neous plane, but also enables consideration of direction
shifts in the near-wall velocity. However, if the wall cells
are too small, the divergence from the mean velocity
value will no longer satisfy the law-of-the-wall in the
mean.

Again, let us consider the current view of the turbu-
lent boundary layer. Through flow visualizations, Kline
et al. [13] have shown an organized trend among the
elongated streaks in the region very close to the wall.
Streaks containing lower momentum fluid were ob-
served to rise slowly, and break up in a process termed
‘bursting’. As mentioned above, ejections are interpreted
as the movement of low momentum fluid away from the
wall. Sweep on the other hand represents the motion of
high momentum fluid towards the wall. Ejections and
sweeps are common in the buffer region between the
linear sublayer and the logarithmic region of the mean
velocity profile [29]. Since the ‘bursting’ phenomena and
the presence of a shift in the correlation between velocity
and wall stress may significantly alter the wall shear
stress, the physical models introduced by Piomelli et al.
[25] are implemented in the model derived by Werner
and Wengle [33]. The new streamwise shear stress is
given by

2] = 2pt|up|
ub Ay

for |up| < ﬁAZ/U-BL (26)

1+B
[tw| = p |:ITBA[(1+B)/(IB)] (L) +1+_B

pAy A
B 2/(14B)
X (L) |14P+m| — CpuUpyas
pAy
K 20-8)
f ——A . 27
or |up| > oAy (27)

The new model uses a shifted near-wall velocity value at
a downstream location for the streamwise and spanwise
shear stresses. Also, a ‘correction’ is made to the wall
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shear stress in the streamwise direction to account for
the ‘bursting’ phenomena observed by the addition
of the term introduced by Piomelli et al. [25]. This
new model is implemented in a large eddy simulation
code.

8. Computer program

A large eddy simulation technique is used in a cur-
vilinear coordinate formulation with the new-wall
models. The computer program GUSTCC is a multi-
dimensional finite volume computer program designed
to solve the conservation equations of continuity and
momentum for a general incompressible fluid [S]. The
limitations of the computer program include single-
phase isothermal flow conditions with no other force
fields except for gravity. A fixed grid in a single domain
is also required.

GUSTCC uses a staggered grid formulation to dis-
cretize the governing equations. The method uses dif-
ferent control volumes for the mass and momentum
variables. Control volumes in GUSTCC are in general
non-orthogonal curvilinear coordinates. Although these
cells are irregular in shape and size, they are structured.

The solution of GUSTCC is second-order accurate in
space and time. It uses the central differencing scheme
for spatial discretization and the Crank—Nicolson
scheme for temporal discretization. The equations of
flow are solved using the covariant projections as the
dependent variables. This necessitates the calculation of
contravariant components that are constructed when
needed to calculate fluxes by using local values of the
metric coefficient and the tensor transformation rules.
There is no additional storage required. For turbulent
flows, the viscosity represents the turbulent viscosity and
is calculated using the appropriate SGS model. Internal
structures use the blockage concept given by Patankar
[23].

9. Lid-driven cavity simulation

A large eddy simulation of the three-dimensional lid-
driven cavity flow was performed. The lid-driven cavity
is a widely used simulation tool for testing numerical
schemes and physical models. Its simple geometry and
well-defined flow structures make the cavity flow an
attractive test case. For isothermal flows, visualization
of flow structures in a lid-driven cavity delineates in-
terestingly complex phenomena. For the following in-
vestigation, the purpose is twofold. One is to show the
ability of GUSTCC to correctly capture the complex
flow structures using LES calculations. The other is to
compare several of the wall models described above to
available experimental data. Comparison between the

Smagorinsky and modified dynamic SGS closure models
is also performed.

In previous experiments, it has been observed that for
Reynolds numbers below 5000, the flow is essentially
laminar [14,26]. As the Reynolds number is increased,
the flow observes a transition region between Reynolds
numbers of 6000 and 8000 becoming more turbulent
near the walls and at a Reynolds number of 10000, the
flow near the downstream eddy becomes fully turbulent
[14]. We have considered the case corresponding to
Re = 10000. This is a challenging test case for wall
models and turbulence closure because the flow experi-
ences large separated regimes displaying laminar, tran-
sitional and turbulent physics.

Fig. 1 gives the basic flow features of a lid-driven
cavity indicating the secondary recirculation in the x—y
plane near the lower downstream wall and upper and
lower upstream wall. In the y—z plane, pairs of Taylor—
Gortler-like (TGL) vortices and lower corner vortices
are shown. The mechanism causing the TGL vortices is
the inherent instability of the concave free shear layer
that separates the primary vortex from the downstream
secondary eddy (DSE). These vortices become distorted
at the higher Reynolds numbers because the onset of
turbulence occurs within the adjacent downstream free
shear layer [15]. The spiraling features in the direction of
flow are, however, evident. The corner vortex, the DSE
and TGL vortices are all integrally inter-related. Koseff
and Street [14] showed that the size of the DSE is
strongly influenced by the characteristics of the corner
vortex. From an overall viewpoint, the high degree of
non-uniformity in the flow structures causes unsteadi-
ness in the cavity [12].

The computational grid (32 x 32 x 32) is uniform in
the spanwise direction, but non-uniform in the stream-
wise and transverse directions. The computation was
carried out on the entire domain at all times, with rigid
no-slip wall boundaries on all sides except for the top
plane, which had a constant wall velocity of Uy (Where B
is the cavity length). Physical dimensions of 0.01 m in
each direction were used, implying a spanwise aspect
ratio (SAR) of 1:1. A lid velocity of 1.0 m/s was en-
forced. The grid in the x—y plane is shown in Fig. 2. The
working fluid is water.

Some early three-dimensional numerical simulations
of lid-driven cavity flows have been performed by [6,7],
where comparisons of flow structures were made with
experimental observations. Quantitative results were not
in good agreement. [12,35] have performed simulations
primarily focusing on the applicability of the dynamic
closure model through quantitative verification of com-
parisons to experimental measurements in terms of the
Reynolds stress quantities, time-dependent flow charac-
teristics and energy spectra. In the present work, similar
comparisons are made. The focus of the investigation is
the LES application and performance evaluation of the
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Fig. 1. Basic flow features of shear driven cavity flow.

Fig. 2. Lid-driven cavity numerical grid in x—y plane.

different wall models under the complex deterministic
flow. The LES results are first compared to experimental
evidence thereby verifying the validity of the models.
Given the Reynolds number based on the lid velocity,
Uz, and the cavity length, B, it is possible to estimate the
Kolomogorov and Taylor length scales in the flow. The
Kolomogorov length scale was evaluated to be
~1 x 107° m while the Taylor microscale was ~5 x 10~

m. The maximum grid size in the domain is 4 = 0.0004
m which is 1.25 times less than the Taylor microscale.
This satisfied the minimum required grid resolution.
Also, distances in non-dimensional wall units were
evaluated. A maximum value of 50 was calculated for
the boundary control volumes and 200 for the bulk of
the flow. These satisfy the recommendations given by
[24]. A constant time step of ~1 x 107* s was used to
advance the flow calculation. While a minimum required
time step size of ~1 x 1073 s is necessary. The Courant
number CFL was 0.333 < 1.0 for the simulations.

Results are compared with experimental data of [26].
Two sets of simulations were performed. One used dif-
ferent wall models while the other used different closure
models. The wall models include the Schumann model,
the shifted model and the Werner and Wengle model.
The modifications discussed above were applied. The
ejection model was rejected due to numerical stability
problems. The second set of simulations used the SGS
closure models of Smagorinsky and dynamic procedure.

Results will be given in the form of mean velocities
u/Up and T/Up, root-mean-square (rms) velocities
V{u"?)/Up and /(v?)/Up, and Reynolds stresses
(u"v") /U2 on the respective centerlines in the midplane
of the test case. All values are normalized with respect to
the lid-driven velocity Us.

All wall models herein are the modified models, but
we will use the original author name given to the models
for brevity. The following set of LES simulations used
the Smagorinsky closure model. Considering mean
velocity values at the midplane centerlines, Fig. 3 shows
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Fig. 3. Mean velocity profiles of lid-driven cavity at midplane
centerline using different wall models.

good comparison among the models tested and the ex-
perimental data. All models cover the wall region ac-
curately by observing the correct slope. The Werner
model, although slightly underpredicting the down-
stream maximum value, has very good agreement with
both the peak values and width of the boundary layers
at each end. The Schumann and sifted models under-
predict the boundary layer width near the bottom and
upstream walls.
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Fig. 4. Root-mean-square value profiles of lid-driven cavity at
midplane centerline using different wall models.
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Fig. 5. Reynolds stress profiles of lid-driven cavity at midplane
centerline using different wall models.

Fig. 4 shows the rms velocities for the same test cases.
Two notables about the Werner model include good
maximum value agreement at the downstream wall and
capture of the ‘zigzag’ phenomena of the boundary layer
near the bottom wall (although the magnitude is un-
derpredicted). The other two models do not perform as
well in these two regions. Some discrepancies are ob-
served in the bulk region. This could be due to the error
propagation from the wall to the central region where
grid resolution is coarser.

Agreement with the more complex Reynolds stresses
in not very good in terms of capturing the boundary
layer maximum values as seen in Fig. 5. From these
observations, it may be stated that accuracy of wall
models in complex geometries is substantially decreased
as compared to channel type flows for which most
models are tested.

Although there was no significant differences among
the tested models, the Werner model overall fared better
compared to the experimental data. All showed very
good agreement in their mean quantities, but some dis-
crepancies were observed in the root-mean-square
velocity and Reynolds stress values. In subsequent sim-
ulations, the Werner wall model is deemed satisfactory
and used accordingly.

The second study involved a comparison between the
Smagorinsky and modified dynamic SGS closure mod-
els. Considering the same physical dimensions, results
using a computational grid of (50 x 50 x 32) cells are
also shown. As stated, only the Werner wall model is
applied. Using the same set of conditions for the above
simulations, the mean values at the midplane centerline
are shown in Fig. 6. No advantage of one model over the
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Fig. 6. Mean velocity profiles of lid-driven cavity at midplane
centerline using different SGS closure models.

other is seen in the mean quantities as well as the rms
values shown in Fig. 7. However, as Fig. 8 delineates,
the Reynolds stresses of the dynamic SGS model are
substantially in better agreement with experimental data
than the Smagorinsky model. This is clear in the
downstream wall where the dynamic model captures the
maximum value accurately as for the bottom and top
walls. From these results it may be concluded that
although differences in mean quantities are negligible
between the Smagorinsky and dynamic models, the
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Fig. 7. Root-mean-square values of lid-driven cavity at mid-
plane centerline using different SGS closure models.
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Fig. 8. Reynolds stress profiles of lid-driven cavity at midplane
centerline using different SGS closure models.

Reynolds stresses are somewhat better predicted using
the dynamic procedure where a local filtering procedure
of the model coefficient was used and is applicable to
complex flow geometries. Considering the case with
large number of control volumes, there is no significant
difference between the smaller case indicating satisfac-
tory grid resolution for the simulations performed with
(32 x 32 x 32) the cells.

Section 10 describes some of the flow structures
captured by the LES calculations. Similar characteristics
were found among all the models tested. Therefore,
observations only from a single simulation case are
presented.

Fig. 9 delineate the instantaneous velocity vector field
of the lid-driven cavity at the x—y midplane. The top of
the lid is moving from left to right at the prescribed
velocity Up. The main circulation cell near the cavity
center is clearly seen. The vectors clearly reveal the
downstream and upstream secondary eddies in the re-
circulating flow. Shifting of these zones is observed as
well.

In a similar form, the velocity vectors at a location
near the downstream wall are plotted in the y—z plane.
The x-direction vorticity contours are also overlain in
Fig. 10. Counter rotation is indicated by the dashed
contours. Three pairs of TGL vortices and corner vor-
tices are visible. The presence of TGL vortices precludes
the possibility that the flow will be two-dimensional. The
corner vortex originates from the adjustment of the
shear and pressure forces acting on the recirculating
fluid to the no-slip condition imposed by the presence of
the end-wall. These visualizations of TGL and corner
vortices and the transitional behavior agree with the
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Fig. 10. Instantaneous velocity vectors near downstream wall
and x-direction vorticity contours.

observations of [15]. It should be noted that the highest
level of turbulence intensity occurs near the DSE region
and upper half of the downstream wall, which is again
consistent with experiments.

Three-dimensional flow structures are plotted in
Fig. 11. While the lid is moving in the positive x-direc-

Fig. 11. Z-vorticity isosurface of lid-driven cavity.

tion on the upper wall, the vorticity isosurface at a value
of =75 Hz are plotted. It is seen that the vorticity is
created on the top plane due to the large shear and
transported by large-scale structures throughout the
cavity. Again, circulation near the downstream wall
show the transitional behavior of TGL vortices. These
structures are coupled with the primary recirculating
flow.

These observations show the ability of the com-
puter program GUSTCC to accurately capture com-
plex physical phenomena in a transitional flow.
Additional complex structures involving internal
structures known as bluff bodies are considered in the
next two sections.

10. Single tube simulation

In the above section the modified Werner and Wen-
gle wall model and the modified dynamic SGS closure
model were shown to behave well in LES of a lid-driven
cavity. Here, these models are used in a LES calculation
for a flow past a bluff body.

Study of bluff body flows is of direct engineering
significance. The physical phenomena that are inherent
to bluff body flows may lead to structural failure.
Therefore, understanding the unsteady behavior and
flow structures is of great importance. Some of the
physical phenomena include separation with partial re-
attachment, unsteady vortex shedding, high turbulence
levels and large-scale turbulent structures which con-
tribute to the mass and momentum transport [27].

Here, the LES approach is implemented using the
GUSTCC computer program to capture the unsteady
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flow behind a circular cylinder in a narrow channel. In
general, vortex structures behind a circular cylinder ex-
tend several diameter lengths downstream. These are
known as Karman vortex streets [34]. Although at very
low Reynolds numbers, the flow is two-dimensional,
complex three-dimensional structures begin to appear
above Reynolds values of 150 [11] and therefore, three-
dimensional simulations are essential.

As the Reynolds number increases, the flow behind a
circular cylinder has been classified to have different
identifiable characteristics. These are well described by
[34]. For the purpose of our calculation, the Reynolds
number based on the freestream velocity and cylinder
diameter is 21 700. This is defined to be in the subcritical
range where the wake characteristics remain relatively
similar [17]. It should be noted that in the following
investigation, the cylinder is placed in a narrow channel.
Roshko [28] found that vortex-shedding characteristics
are changed when a plate is brought closer to the cyl-
inder. He observed a decrease in shedding frequency and
the vortex formation region was wider and longer.

The purpose of our calculations is twofold. First,
qualitative observations of flow characteristics behind a
circular cylinder in a channel are described and com-
pared to similar experimental visualizations. Second,
sensitivity studies of the GUSTCC computer program
for complex geometries are performed. These include the
effect of the SGS model, grid resolution and temporal
resolution.

A schematic of the simulation geometry in the x—y
plane is shown in Fig. 12. Expected patterns of vortex
structures are sketched in the figure delineating the
alternating eddying motion. For a given tube diameter
D, an inlet section of length 2D was used to implement
the boundaries and develop the flow. Here, small
fluctuations were added to the mean inlet profile. The
region in the cylinder wake extended for a distance of
over 6D. A spanwise distance of 5D was used. The
width of the channel was P = 31.8 mm and the diam-
eter of the cylinder D = 21.7 mm. Fig. 13 shows the
95 x 38 x 32 curvilinear grid used for the simulation.
Non-uniform grids were concentrated around the
cylinder. Here, the positive x-direction has streamwise
flow. In the z-direction, the grids are concentrated near
the boundary walls.

Direction of Flow
R

P92
«—2p —»l« P 447 6 ———»|

Fig. 12. Schematic of single tube in a channel.

Fig. 13. Single tube nodalization.

The instantaneous velocity magnitude and cross-flow
velocity for a single shedding cycle are shown first.
Figs. 14 and 15 give contours of four frames for the
normalized velocity magnitude and cross-flow velocity
at the simulation x—y midplane, respectively. Each frame
is 0.01 s apart. The figures represent a full shedding cycle
(~25) Hz. The normalized velocity magnitudes show the
highest flow to occur in the passage between the wall and
the tube. These high velocities are then combined in the
wake of the tube near the center of the channel. The
lowest velocities are observed in between this region and
the tube wall. Alternating low and high velocity mag-
nitude wavelike structures are also observed near the
channel walls. These structures are carried downstream.
Cross-flow velocities represent the occurrences of high-
est transverse flow in the structure. The shedding
behavior of the flow produces the high cross-flow values
at a frequency consistent with the shedding of vortices
behind the tube.

Figs. 16 and 17 delineate the transverse velocity iso-
surface depicting positive and negative contours for two
frames. The alternating regions of positive (violet) and
negative (green) flow velocity of 0.2 m/s correspond to
Karman vortices [16]. There is a decrease in the strength
of shedding amplitude with increased distance from the
tube. The wake of the flow at this Reynolds number is
clearly three-dimensional. The shedding velocities have
consistent structures near the center of the spanwise
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Fig. 14. Normalized velocity magnitude of single tube in a channel for four sequential frames.

direction, while the structure of shedding is not so ap-
parent near the top and bottom walls.

Contours of instantaneous z-vorticity for the same
cycles at the flow midplane are shown in Fig. 18 (units
are in Hz). The alternating motion of the two shear
layers separating from the cylinder sides is observed.
These shear layers cause instabilities in the flow leading
to the development of the Karman vortex street. An
unsteady recirculation region is observed that alternates
from one edge of the wall to the other and encompasses
a range of large and small structures. In an unobstructed
bluff body, where channel walls are absent, the flow
structures tend to increase in size with increasing
streamwise distance [16]. However, due to the proximity

of the walls, the large structures are kept at relatively
constant integral lengths and, as observed by [28], en-
counter a shift in shedding frequency. Although some-
what weaker than the shedding vortices, rotational
structures are present near the walls indicating the
wavelike structures mentioned above to be recirculation
zones that propagate downstream with alternating
cycles in sync with the shedding frequency.

While in laminar flows, periodic transverse fluctua-
tions are observed, in turbulent flows, low-frequency
intermittent velocity fluctuations are present [34]. The
non-dimensional instantaneous values shown in Fig.
19(a) and (b) agree with the above statement. In Fig.
19(a), the streamwise instantaneous velocity values are
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Fig. 15. Cross flow velocity magnitude of single tube in a channel for four sequential frames.

plotted as a function of time step at x/D = 0.65, 0.81.
Both positions are within the recirculation zone of the
tube wake and are generally negative except for a short
time. Fig. 19(b) shows the instantaneous transverse ve-
locity at the same locations. Some form of periodic be-
havior is apparent among the low-frequency
fluctuations. The fluctuating frequencies are higher for
the streamwise values relative to the transverse veloci-
ties. This will become clear in PSD plots below.

The spectra of velocities are considered next. The
non-dimensional PSD of streamwise and transverse ve-
locities are plotted as a function of frequency in Fig.
20(a) and (b) for the centerline x/D = 0.65 at the mid-
plane and near the wall. The plots use 1024 samples for
the FFT. The inertial subrange covers about a decade in

frequency. The —5/3 slope is also shown in the plots.
Although not very sharp, a peak is observed in Fig.
20(b) for the midplane PSD. This corresponds to the
shedding frequency or Strouhal frequency. On the other
hand a smaller peak at twice this frequency is seen for
the streamwise velocity PSD near the midplane. These
are due to the instantaneous velocity distributions in the
tube wake shown above. The values located near the
walls do not show a similar trend.

The non-dimensional streamwise mean velocity
value at the midplane centerline is plotted as a function
of non-dimensional position in Fig. 21(a). The statistics
were accumulated only for four shedding cycles. In the
downstream region, there is a decrease in velocity.
This is due to the end wall effects. Fig. 21(b)—(d) show
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Fig. 17. Transverse velocity isosurface contours at positive and negative value of 0.2 for single tube for frame 3.
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Flow Direction

Frame 1

Frame 2

Frame 3

Frame 4
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Fig. 18. Z-vorticity contours of single tube in a channel for four sequential frames.

the mean and turbulent stresses at the midplane
x/D = 0.65. The V-shape profile of the mean velocity
inside the recirculation zone has been described in
experiments and captured in our simulation (Fig. 21(b)).
The rms and Reynolds stress values are shown in
Fig. 21(c) and (d), respectively. The profiles are similar
to experimental data available for lower velocity
simulations.

The GUSTCC computer program uses a central
differencing scheme for its spatial discretization. It has
been shown recently by Kravchenko and Moin [16] that
LES calculations with central differencing schemes are in
better agreement with experimental data than those
performed with dissipative methods [16]. Breuer and

Pourquie [3] have also shown that the influence of SGS
model was not found to be strong when comparing be-
tween the Smagorinsky and dynamic SGS models. This
agrees with lid-driven cavity results. No practical dif-
ferences of the mean and stress values were seen between
the two SGS models.

In order to perform some sensitivity studies of the
GUSTCC computer program, parameter variations
were studied. To assess the effect of the SGS model, we
performed simulations with and without the SGS
closure model. The simulation without the SGS model
did not converge. From this we may conclude that for
this Reynolds number with the given grid resolution, the
SGS model contribution is significant to the flow and
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therefore cannot be ignored. Also, it shows that nu-
merical diffusion is minimal.

To show that the resolution of the grid was adequate,
a coarser mesh (78 x 34 x 20) was simulated with simi-
lar geometry and boundary conditions (with the excep-
tion of tube downstream length of 4D instead of 6D).
Considering the mean and statistical values, both cases
compare well to each other. However, the wavelike
structures and recirculation zones near the channel walls
were not captured with the coarser mesh. A limiting
factor in this case was the tube downstream length. It is
recommended that longer regions be used. The wave-
length of the streamwise structures in the near wake of a
circular cylinder scale [34]

(28)

Az _
o 25Rep”,

which is an estimate of the required spanwise resolution
and domain size. The 32 cells in this direction satisfy
that requirement.

Another test was performed to show if any unac-
ceptable numerical damping was present. In the simu-
lations without a SGS model, the time step was halved
twice and applied to the simulation without a SGS
model to see if numerical diffusion would cause the flow
to converge. No such convergence was seen.

With the above simulation, the computer program
was applied to complex geometries and captured
experimentally observed physical phenomenon. The
profiles of mean and statistical quantities are accept-
able. The PSD plots are consistent with the instanta-
neous values. It is important to understand the flow
dynamics of the wake of a bluff body and be able to
predict the forces acting on that body. With the above
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Fig. 21. Mean and stress profiles for single tube in a channel.

simulation, the vortex shedding behind the cylinder was
captured.

11. Conclusions

The numerical prediction of turbulent flows for
complex geometries was achieved using the large eddy
simulation technique. In order to stabilize the variation
of the model coefficient in the dynamic subgrid scale
model, temporal and spatial low-pass filters were ap-
plied. Furthermore, upper and lower limits on the eddy
viscosity were placed. The modifications improve the
behavior of the dynamic subgrid scale model for the
near-wall regions, in laminar flows and account for en-
ergy backscatter.

The new-wall model developed for complex geome-
tries was based on the 1/7 power law. Shear stresses at
the wall were evaluated in each direction. Ejection and
sweep effects were added. These effect the shear stress
near the wall. The velocity correlation with the shear
stress was shifted in the downstream direction.

Results were validated in a lid-driven cavity flow. The
complex separation and recirculation regions of this
three-dimensional flow were used to validate the wall
and subgrid scale models. Several wall models were
tested. These compared well to experimental data.
Taylor—Gortler-like and lower corner vortices were
captured and visualization showed acceptable behavior
of the flow. There was no significant difference between
the dynamic subgrid scale and Smagorinsky closure
models.
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A simplified bluff body simulation with a single tube
in a channel showed the capability of the computer
program to capture unsteady phenomena. Visualization
delineated the vortex shedding behind a circular cylinder
as well as the effect of the channel walls. The complex
structures reinforced the importance of three-dimen-
sionality of the flow. Mean quantities agreed with
expected profiles behind a circular cylinder. A weak
form of the Strouhal peak was captured in the transverse
velocity PSD. A peak at twice the Strouhal frequency
was observed in the streamwise PSD.

The large eddy simulation computer program with
subgrid scale model improvements and introduction of
new-wall model was used. The results showed that the
computer program was capable of unsteady flow simu-
lation in complex geometry.
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